主页 > 啤酒分类 > 拉格

拉格朗日求极值(拉格朗日求极值怎么解)

啤酒之家 2022-12-30 04:28 编辑:admin 298阅读

1. 拉格朗日求极值怎么解

对于无约束条件的函数求极值,主要利用导数求解法

例如求解函数f(x,y)=x3-4x2+2xy-y2+1的极值。步骤如下:

(1)求出f(x,y)的一阶偏导函数f’x(x,y),f’y(x,y)。

f’x(x,y) = 3x2-8x+2y

f’y(x,y) = 2x-2y

(2)令f’x(x,y)=0,f’y(x,y)=0,解方程组。

3x2-8x+2y = 0

2x-2y = 0

得到解为(0,0),(2,2)。这两个解是f(x,y)的极值点。

2. 拉格朗日 求极值

这里用的是导数的定义,不是拉格朗日中值定理,虽然有点象,但其本质是不一样的。当然,拉格拉日中值定理只要原函数在开区间内可导,在闭区间内连续就可以了,没有要求导函数一定要连续

3. 拉格朗日不等式求极值

在数学最优化问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个矢量的系数。

引入新变量拉格朗日乘数,即可求解拉格朗日方程

此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。

4. 拉格朗日定理求极值

求极限常用等价无穷小替代、洛必达法则、泰勒公式等方法,有时候等价无穷小不能用,洛必达法则过于繁琐,泰勒公式法虽然强大但是相对麻烦。对有一些形式,使用拉格朗日中值定理非常便捷。下面举两个个例子:

这种形式的式子,很明显直接使用等价无穷小是不行的,洛必达法则又麻烦至极,泰勒公式做起来也不轻松。

我们发现上述式子有这样的特点:右侧减法式子里,两项的形式都非常类似,并且随着极限的趋向,两项越来越接近。这时候我们可以使用拉格朗日中值定理处理这个减法式子。

于是上述式子就可以变成(恒等变换):

这个时候,随着x的增大,可以发现,拉格朗日中值定理作用的区间越来越小,最终可以确定

然后接下来就非常好办了

上面的式子有这样的共性:1.存在两项相减因式且形式相同;2.随着x的变化,因式的两项越来越接近(

所在区间变小)

5. 拉格朗日乘数求极值

判断是极大值还是极小值点,一个初步的方法是依靠经验和对问题的认识。当不能作出有效判断时,可以求取函数的二阶导数进行判断,其实一个简单的方法是比较该极值点的函数值与相邻点的函数来作出判断。

至于存在不能化为无条件极值的问题,一般是先不管约束条件建立求解极值点的方程,然后再限制在约束条件下求出最后解答,具体的过程,建议参看变分原理等数学或力学书籍,如《计算动力学》中就有提到,不过这本书不是纯粹的数学推演。

6. 拉格朗日中值定理求极值的方法

1.求函数的定义域;

2.求函数的导数;

3.解不等式导数大于0,导数小于0的解集;

4.根据导数大于0以及导数小于0的解集,得到这个函数的单调递增区间和单调递减区间;

5.根据函数的单调性判断函数的极值点有哪些,是极大值还是极小值,先减后增是极小值,先增后减是极大值;

6.分别代入每个极值点,求函数的所有极值,如果只有极小值,答案中一定注明“无极大值”,只有极大值也是如此。

7. 拉格朗日法求极值快速求解

拉格朗日乘数法是多元微分学中用来求函数z=f(x,y)在满足g(x,y)=0条件下的极值问题的方法:通过设F(x,y)=f(x,y)+λg(x,y),其中λ称为拉格朗日乘数,并求F(x,y)的极值点求得条件极值的方法

下一篇:格瓦拉头像(为什么都印切·格瓦拉的头像?)
上一篇:视频格桑拉(妈妈歌曲格桑拉中格桑拉指什么?)