一、拉格朗l1
它是地球围绕太阳公转的,不是静止的随地球而公转
二、拉格朗日中值定理
拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。
三、拉格朗日中值定理证明
把拉格朗日定理移项,得f(x)-[f(b)-f(a)]/(b-a)*(x-a)=0,令u(x)等于等号左边的函数。
于是有u(a)=u(b)=f(a),这就满足了罗尔定理。
罗尔定理是:在[a,b]上满足u(a)=u(b)时,一定存在m属于(a,b)使u(x)的导数等于0。
这些条件现在都满足了,而且对u(x)求导后,经过简单移项,立刻就可得到拉格朗日中值定理的式子。罗尔定理是拉格朗日中值定理在f(a)=f(b)时的特殊情况。
四、拉格朗日函数
考研的时候数学考的是全国统考的数学一二三,那么,你完全不需要了解多元函数条件极值的判别,只需要应用朗格朗日乘数法或者代入法解决问题就可以了。在考试中,涉及条件极值的题目都是求最值的应用题,我们使用拉格朗日乘数法找到边界驻点,再利用二元函数求极值的方法找到区域内驻点,然后直接比较这些点处的函数值就可以了。
五、拉格朗日
拉格朗日定理存在于多个学科领域中,分别为:流体力学中的拉格朗日定理;微积分中的拉格朗日定理;数论中的拉格朗日定理;群论中的拉格朗日定理。
正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志。 如果在一个正整数的因数分解式中,没有一个数有形式如4k+3的质数次方,该正整数可以表示成两个平方数之和。
六、拉格朗日余项
简单说 皮亚诺余项用在求极限地题目中比较多 比如说你把一个函数写成皮亚诺形式 展开到n阶导数再加上个高阶无穷小的话,前提条件并不要求函数具有n+1阶导数.拉格朗日感觉一般是用在证明题中,由于余项是用拉格朗日中值定理求出来的,所以展开到n阶的话,一定要求函数具有n+1阶导数.
七、拉格朗日定理
拉格朗日定理存在于多个学科领域中,分别为:流体力学中的拉格朗日定理;微积分中的拉格朗日定理;数论中的拉格朗日定理;群论中的拉格朗日定理。
正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志。 如果在一个正整数的因数分解式中,没有一个数有形式如4k+3的质数次方,该正整数可以表示成两个平方数之和。
八、拉格朗日点
又称平动点,在天体力学中是限制性三体问题的五个特解。一个小物体在两个大物体的引力作用下在空间中的一点,在该点处,小物体相对于两大物体基本保持静止。
这些点的存在由瑞士数学家欧拉于1767年推算出前三个,法国数学家拉格朗日于1772年推导证明剩下两个。1906年首次发现运动于木星轨道上的小行星(见特洛依群小行星)在木星和太阳的作用下处于拉格朗日点上。
在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向。
每个稳定点同两大物体所在的点构成一个等边三角形。
九、拉格朗L2点出没出地球引力
地球对另一个物体产生的吸引力的大小和另一个物体的质量成正比,所以说地球的吸引力不是确定的,要看吸引力的物体的质量。
地球要对其它物体产生吸引力,自己对自己不能产生力的作用。
例如物体的质量为m,则地球对它的吸引力近似等于重力G。故可以写成G=mg(g=9.8N/Kg)。
引力是质量的固有本质之一;每一个物体必然与另一个物体互相吸引。尽管引力的本质还有待于确定,但人们早已觉察到了它的存在和作用。接近地球的物体,无一例外地被吸引朝向地球质量的中心。因为在地球表面上的任何物体,与地球本身的质量相比,实在是微不足道的。
引力值只有知道了产生引力的两个物体的质量和它们之间的距离,才能计算;如果只给地球一个物体,是不能计算的。地球的引力也不是不能表示,由于地球的引力作用,产生了一个作用效果,那就是地球附近的物体都有了重力。表示道地球表面引力大小的一个标志就是重力加速:g=9.8m/s^2引力的计算公式是:F=Gm1m2/r^2。
上式中,G是引力常数,m1、m2是产生引力的两个物体的质量,r是两物体的距离。
十、拉格朗日乘数法
拉格郎日乘数法的适用条件是乘数不等于0。
求最值(最值是某个区间的最大或最小,注意最大/最小可能有同值的多个,所以也不唯一哈,极值是一个小范围,很小很小,内的最值).因为最值总是发生在极值点+区间边界点+间断点处,所以可以用拉朗乘数求出极值,用边界和间断点极限求出可疑极值,比较他们的大小,就可以找到区间内的最值了.特别地,若函数在区间内用拉朗求出仅一个极值,切很易判定没有其他可疑极值点,就可以直接判断那个极值是最值;或者可以判断函数在所给区间内单调(比如exp(x^2+y^2)在(x>0,y>0)时单调递增),就不用求极值(因为没有),直接求区间边界(或者间断点,有间断点也可以单调的)作为最值。