一、拉格朗日酒庄
[拉格朗日(Lagrange)中值定理]若函数f(x)满足条件:
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导,则在(a,b)内至少存在一点ξ,使得
显然,罗尔定理是拉格朗日中值定理当f(a)=f(b)时的特殊情形,拉格朗日中值定理是罗尔定理的推广。
二、拉格朗日红酒
拉格朗日法是描述流体运动的两种方法之一,又称随体法,跟踪法。
是研究流体各个质点的运动参数(位置坐标、速度、加速度等)随时间的变化规律。综合所有流体质点运动参数的变化,便得到了整个流体的运动规律。
在研究波动问题时,常用拉格朗日法
三、拉格朗日百度百科
罗尔中值定理能推出拉格朗日中值定理和柯西中值定理,反过来拉格朗日中值定理和柯西中值定理也可以推出罗尔中值定理。
泰勒中值定理是由柯西中值定理推出来的。泰勒中值定理在一阶导数情形就是拉格朗日中值定理。
罗比达法则是柯西中值定理在求极限时应用。
四、拉格朗曰
拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。
直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。
在进入都灵皇家炮兵学院学习后,拉格朗日开始有计划地自学数学。由于勤奋刻苦,他的进步很快,尚未毕业就担任了该校的数学教学工作。20岁时就被正式聘任为该校的数学副教授。从这一年起,拉格朗日开始研究“极大和极小”的问题。他采用的是纯分析的方法。1758年8月,他把自己的研究方法写信告诉了欧拉,欧拉对此给予了极高的评价。从此,两位大师开始频繁通信,就在这一来一往中,诞生了数学的一个新的分支——变分法。
1759年,在欧拉的推荐下,拉格朗日被提名为柏林科学院的通讯院士。接着,他又当选为该院的外国院士。
1762年,法国科学院悬赏征解有关月球何以自转,以及自转时总是以同一面对着地球的难题。拉格朗日写出一篇出色的论文,成功地解决了这一问题,并获得了科学院的大奖。拉格朗日的名字因此传遍了整个欧洲,引起世人的瞩目。两年之后,法国科学院又提出了木星的4个卫星和太阳之间的摄动问题的所谓“六体问题”。面对这一难题,拉格朗日毫不畏惧,经过数个不眠之夜,他终于用近似解法找到了答案,从而再度获奖。这次获奖,使他赢得了世界性的声誉。
1766年,拉格朗日接替欧拉担任柏林科学院物理数学所所长。在担任所长的20年中,拉格朗日发表了许多论文,并多次获得法国科学院的大奖:1722年,其论文《论三体问题》获奖;1773年,其论文《论月球的长期方程》再次获奖;1779年,拉格朗日又因论文《由行星活动的试验来研究彗星的摄动理论》而获得双倍奖金。
在柏林科学院工作期间,拉格朗日对代数、数论、微分方程、变分法和力学等方面进行了广泛而深入的研究。他最有价值的贡献之一是在方程论方面。他的“用代数运算解一般n次方程(n4)是不能的”结论,可以说是伽罗华建立群论的基础。
五、拉格朗日是干嘛的
由开尔文定理可直接推论得到拉格朗日定理(Lagrange theorem),即漩涡不生不灭定理:
正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。反之,若初始时刻该部分流体有涡,则在此之前或以后的任何时刻中这部分流体皆为有涡。
六、拉格朗日θx
在这里xyz都是自变量,
V=xyz就是一个多元函数,并不是方程,
x,y,z的变化都会使V发生变化
没错,xyz满足了条件
φ(x,y,z)=2xy+2yz+2xz-a^2=0
你当然可以把其中一个用另外两个来表示,
再带回到V=xyz中,
然后只求偏导两次就可以了
七、拉格郎日点
从天体物理学的角度看,拉格朗日点被发现后,天文学家认为在一个恒星系统中的5个拉格朗日点上,应该存在大量的天体。按照这个思路,天文学家已经在太阳系的多个行星系统中发现了大量此前未被发现或者观测到的小行星。比如,在木星的L4和L5两个拉格朗日点上,就发现了大量的特洛伊小行星,数量超过2000个。
从航空航天的角度看,拉格朗日点发现,极大地推动了现代航天科学的进步。由于位于拉格朗日点的航天器只需要很少的燃料就可以维持轨道稳定,因此,这5个拉格朗日点成为航天器的首选目的地,并且,5个拉格朗日点的不同位置,对于不同的航天器来说,也具有不同的优势。