主页 > 拉格

拉格朗日中 的值怎么求

啤酒之家 2023-06-18 23:27 编辑:admin 160阅读

一、拉格朗日乘数法求最值?

构造函数4a+b+m(a^2+b^2+c^2-3)

对函数求偏导并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同时a^2+b^2+c^2=3

所以

m=根号17/2根号3

a=-4根号3/根号17

b=-根号3/根号17

4a+b=-根号51

1、是求极值的,不是求最值的

2、如果要求最值,要把极值点的函数值和不可导点的函数值还有端点函数值进行比较

3、书上说是可能的极值点,这个没错,比如f(x)=x^3,在x=0点导数确实为0,但是不是极值点,所以是可能的极值点,到底是不是要带入原函数再看

二、为什么有时候用拉格朗日中值求极限会错误?

因为拉格朗日中值定理有一个变形,即所谓的有限增量公式:f(x0+Δx)-f(x0)=f'(x0+θΔx)Δx,0<θ<1。

用这个公式计算就会正确

三、拉格朗日求极值公式?

对于无约束条件的函数求极值,主要利用导数求解法

例如求解函数f(x,y)=x3-4x2+2xy-y2+1的极值。步骤如下:

(1)求出f(x,y)的一阶偏导函数f’x(x,y),f’y(x,y)。

f’x(x,y) = 3x2-8x+2y

f’y(x,y) = 2x-2y

(2)令f’x(x,y)=0,f’y(x,y)=0,解方程组。

3x2-8x+2y = 0

2x-2y = 0

得到解为(0,0),(2,2)。这两个解是f(x,y)的极值点。

四、拉格朗日插值法公式怎么记?

线性插值也叫两点插值,已知函数y = f (x)在给定互异点x0, x1上的值为y0= f (x0),y1=f (x1)线性插值就是构造一个一次多项式:P1(x) = ax + b,使它满足条件:P1 (x0) = y0, P1 (x1) = y1 其几何解释就是一条直线,通过已知点A (x0, y0),B(x1, y1)

五、2点的拉格朗日插值公式?

拉格朗日插值公式

约瑟夫·拉格朗日发现的公式

拉格朗日插值公式线性插值也叫两点插值,已知函数y = f (x)在给定互异点x0, x1上的值为y0= f (x0),y1=f (x1)线性插值就是构造一个一次多项式P1(x) = ax + b使它满足条件P1 (x0) = y0 P1 (x1) = y1其几何解释就是一条直线,通过已知点A (x0, y0),B(x1, y1)。

六、拉格朗日数乘法求极值例题?

举个最简单的例子

f(x,y)=x+y subject to the constraint:2x+y^2 -5=0

define the lagrange function

L(x,y)=x+y+λ(2x+y-5)

partial derivertive:

d(L)/d(x)=1+2λ=0

d(L)/d(y)=1+λy=0

d(L)/d(λ)=2x+y-5=0

最底下着三个方程组是怎么的出来的

f(x,y)= C ln x1+d ln x2

P1X1+P2X2=M

L(x,y) 分别对x,y,λ 求偏导

L(x,y)=C ln x1+d ln x2+λ (P1X1+P2X2-M)

分别对x1,x2,λ 求偏导

d(L)/d(x1)=c/x1+λp1=0

d(L)/d(x1)=d/x2+λp2=0

d(L)/d(x1)=P1X1+P2X2-M=0

七、什么是拉格朗日插值法?

在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。

许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。

八、求通俗解释拉格朗日点原理?

拉格朗日中值定理可以看成是中间有点的导数值等于连接起点终点直线的斜率,就是中间那一点的切线斜率等于连接那两点直线的斜率(就是平行了)

九、高数拉格朗日定理求极限?

求极限常用等价无穷小替代、洛必达法则、泰勒公式等方法,有时候等价无穷小不能用,洛必达法则过于繁琐,泰勒公式法虽然强大但是相对麻烦。对有一些形式,使用拉格朗日中值定理非常便捷。下面举两个个例子:

这种形式的式子,很明显直接使用等价无穷小是不行的,洛必达法则又麻烦至极,泰勒公式做起来也不轻松。

我们发现上述式子有这样的特点:右侧减法式子里,两项的形式都非常类似,并且随着极限的趋向,两项越来越接近。这时候我们可以使用拉格朗日中值定理处理这个减法式子。

于是上述式子就可以变成(恒等变换):

这个时候,随着x的增大,可以发现,拉格朗日中值定理作用的区间越来越小,最终可以确定

然后接下来就非常好办了

上面的式子有这样的共性:1.存在两项相减因式且形式相同;2.随着x的变化,因式的两项越来越接近(

所在区间变小)

十、拉格朗日求极限有什么限制?

这里用的是导数的定义,不是拉格朗日中值定理,虽然有点象,但其本质是不一样的。当然,拉格拉日中值定理只要原函数在开区间内可导,在闭区间内连续就可以了,没有要求导函数一定要连续

下一篇:双排键演奏的格桑拉 双排键示范曲
上一篇:炉石战旗小拉格纳罗斯 炉石战旗 小拉格