1. 拉格朗日余项泰勒公式展开式
拉格朗日(Lagrange)余项: ,其中θ∈(0,1)。 拉格朗日余项实际是泰勒公式展开式与原式之间的一个误差值,如果其值为无穷小,则表明公式展开足够准确。 证明: 根据柯西中值定理: 其中θ1在x和x0之间;继续使用柯西中值定理得到: 其中θ2在θ1和x0之间;连续使用n+1次后得到: 其中θ在x和x0之间;
2. 拉格朗日余项的泰勒展开公式
拉格朗日余项的泰勒公式:f'(x)=n+1。泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
3. 泰勒公式拉格朗日余项公式推导
拉格朗日(Lagrange)余项: ,其中θ∈(0,1)。 拉格朗日余项实际是泰勒公式展开式与原式之间的一个误差值,如果其值为无穷小,则表明公式展开足够准确。 证明: 根据柯西中值定理: 其中θ1在x和x0之间;继续使用柯西中值定理得到: 其中θ2在θ1和x0之间;连续使用n+1次后得到: 其中θ在x和x0之间;同时: 进而: 综上可得:
4. 带泰勒余项的拉格朗日公式展开求极限
f(x)=x^(1/2) f(4)=2 f'(x)=1/2 x^(-1/2) f'(4)=1/4f''(x)=-1/2^
2 x^(-3/2) f''(4)=-1/2^5f'''(x)=3/2^3 x^(-5/2) f'''(4)=3/2^8f''''(x)=-3*5/2^4 x^(-7/2)∴函数f(x)=√x按(x-4)的幂展开的带有拉格朗日型余项的3阶泰勒公式:√x=2+1/4(x-4)-1/2^6(x-4)^2+1/2^9(x-4)^3-5/2^7(4+θx)^(-7/2)(x-4)^4
5. 含有拉格朗日余项的泰勒展开式
线性插值也叫两点插值,已知函数y = f (x)在给定互异点x0, x1上的值为y0= f (x0),y1=f (x1)线性插值就是构造一个一次多项式:P1(x) = ax + b,使它满足条件:P1 (x0) = y0, P1 (x1) = y1
其几何解释就是一条直线,通过已知点A (x0, y0),B(x1, y1)。
线性插值计算方便、应用很广,但由于它是用直线去代替曲线,因而一般要求[x0, x1]比较小,且f(x)在[x0, x1]上变化比较平稳,否则线性插值的误差可能很大。为了克服这一缺点,有时用简单的曲线去近似地代替复杂的曲线,最简单的曲线是二次曲线,用二次曲线去逼近复杂曲线的情形。
6. 带有拉格朗日余项的泰勒展开式
简单说 皮亚诺余项用在求极限地题目中比较多 比如说你把一个函数写成皮亚诺形式 展开到n阶导数再加上个高阶无穷小的话,前提条件并不要求函数具有n+1阶导数.拉格朗日感觉一般是用在证明题中,由于余项是用拉格朗日中值定理求出来的,所以展开到n阶的话,一定要求函数具有n+1阶导数.