主页 > 啤酒分类 > 拉格

拉格朗日对偶性(拉格朗日对偶性和KKT条件)

啤酒之家 2022-12-31 08:08 编辑:admin 66阅读

1. 拉格朗日对偶性和KKT条件

[拉格朗日(Lagrange)中值定理]若函数f(x)满足条件:

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导,则在(a,b)内至少存在一点ξ,使得

显然,罗尔定理是拉格朗日中值定理当f(a)=f(b)时的特殊情形,拉格朗日中值定理是罗尔定理的推广。

2. 拉格朗日乘数法kkt条件

拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的 多元函数的 极值的方法。

这种方法将一个有n 个变量与k 个 约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。此方法的证明牵涉到偏微分, 全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值

3. 拉格朗日对偶函数

约瑟夫·拉格朗日

外文名

Joseph-Louis Lagrange

别名

拉格朗日

性别

出生日期

1736年

去世日期

1813年4月10日

国籍

法国

出生地

意大利都灵

职业

数学家

物理学家

代表作品

《关于解数值方程》和《关于方程的代数解法的研究》

主要成就

拉格朗日中值定理等

数学分析的开拓者

4. 拉格朗日乘数法与kkt条件

拉格朗日乘数法是多元微分学中用来求函数z=f(x,y)在满足g(x,y)=0条件下的极值问题的方法:通过设F(x,y)=f(x,y)+λg(x,y),其中λ称为拉格朗日乘数,并求F(x,y)的极值点求得条件极值的方法

5. 拉格朗日对偶问题和对偶问题

首先是我们有不等式约束方程,这就需要我们写成min max的形式来得到最优解。而这种写成这种形式对x不能求导,所以我们需要转换成max min的形式,这时候,x就在里面了,这样就能对x求导了。

而为了满足这种对偶变换成立,就需要满足KKT条件(KKT条件是原问题与对偶问题等价的必要条件,当原问题是凸优化问题时,变为充要条件)。

6. 拉格朗日函数的对偶性

函数需要满足完整约束。拉格朗日函数是在力学系上只有保守力的作用,是描述整个物理系统的动力状态的函数。

在分析力学里,假设已知一个系统的拉格朗日函数,则可以将拉格朗日量直接代入拉格朗日方程,稍加运算,即可求得此系统的运动方程。

在力学系上只有保守力的作用,则力学系及其运动条件就完全可以用拉格朗日函数表示出来。这里说的运动条件是指系统所受的主动力和约束。因此,给定了拉氏函数的明显形式就等于给出了一个确定的力学系。拉氏函数是力学系的特性函数。

下一篇:菲拉格慕哪款(菲拉格慕哪款腰带最经典)
上一篇:拉扎尔安格洛夫壁纸(格利扎壁纸)