主页 > 啤酒分类 > 拉格

拉格朗日平动点(拉格朗日点受力平衡)

啤酒之家 2022-12-31 18:37 编辑:admin 98阅读

1. 拉格朗日点受力平衡

拉格朗日点指受两大物体引力作用下,能使小物体稳定的点. 一个小物体在两个大物体的引力作用下在空间中的一点,在该点处,小物体相对于两大物体基本保持静止。这些点的存在由法国数学家拉格朗日于1772年推导证明的。1906年首次发现运动于木星轨道上的小行星(见脱罗央群小行星)在木星和太阳的作用下处于拉格朗日点上。

在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向。

每个稳定点同两大物体所在的点构成一个等边三角.

2. 拉格朗日引力平衡点

拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。

直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。

在进入都灵皇家炮兵学院学习后,拉格朗日开始有计划地自学数学。由于勤奋刻苦,他的进步很快,尚未毕业就担任了该校的数学教学工作。20岁时就被正式聘任为该校的数学副教授。从这一年起,拉格朗日开始研究“极大和极小”的问题。他采用的是纯分析的方法。1758年8月,他把自己的研究方法写信告诉了欧拉,欧拉对此给予了极高的评价。从此,两位大师开始频繁通信,就在这一来一往中,诞生了数学的一个新的分支——变分法。

1759年,在欧拉的推荐下,拉格朗日被提名为柏林科学院的通讯院士。接着,他又当选为该院的外国院士。

1762年,法国科学院悬赏征解有关月球何以自转,以及自转时总是以同一面对着地球的难题。拉格朗日写出一篇出色的论文,成功地解决了这一问题,并获得了科学院的大奖。拉格朗日的名字因此传遍了整个欧洲,引起世人的瞩目。两年之后,法国科学院又提出了木星的4个卫星和太阳之间的摄动问题的所谓“六体问题”。面对这一难题,拉格朗日毫不畏惧,经过数个不眠之夜,他终于用近似解法找到了答案,从而再度获奖。这次获奖,使他赢得了世界性的声誉。

1766年,拉格朗日接替欧拉担任柏林科学院物理数学所所长。在担任所长的20年中,拉格朗日发表了许多论文,并多次获得法国科学院的大奖:1722年,其论文《论三体问题》获奖;1773年,其论文《论月球的长期方程》再次获奖;1779年,拉格朗日又因论文《由行星活动的试验来研究彗星的摄动理论》而获得双倍奖金。

在柏林科学院工作期间,拉格朗日对代数、数论、微分方程、变分法和力学等方面进行了广泛而深入的研究。他最有价值的贡献之一是在方程论方面。他的“用代数运算解一般n次方程(n4)是不能的”结论,可以说是伽罗华建立群论的基础。

3. 拉格朗日点物理

从天体物理学的角度看,拉格朗日点被发现后,天文学家认为在一个恒星系统中的5个拉格朗日点上,应该存在大量的天体。按照这个思路,天文学家已经在太阳系的多个行星系统中发现了大量此前未被发现或者观测到的小行星。比如,在木星的L4和L5两个拉格朗日点上,就发现了大量的特洛伊小行星,数量超过2000个。

从航空航天的角度看,拉格朗日点发现,极大地推动了现代航天科学的进步。由于位于拉格朗日点的航天器只需要很少的燃料就可以维持轨道稳定,因此,这5个拉格朗日点成为航天器的首选目的地,并且,5个拉格朗日点的不同位置,对于不同的航天器来说,也具有不同的优势。

4. 拉格朗日点稳定性

[拉格朗日(Lagrange)中值定理]若函数f(x)满足条件:

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导,则在(a,b)内至少存在一点ξ,使得

显然,罗尔定理是拉格朗日中值定理当f(a)=f(b)时的特殊情形,拉格朗日中值定理是罗尔定理的推广。

5. 第二拉格朗日点怎么平衡力

拉格朗日法是描述流体运动的两种方法之一,又称随体法,跟踪法。

是研究流体各个质点的运动参数(位置坐标、速度、加速度等)随时间的变化规律。综合所有流体质点运动参数的变化,便得到了整个流体的运动规律。

在研究波动问题时,常用拉格朗日法

6. 拉格朗日点稳定点

拉格朗日点有5个,但只有两个是稳定的。

拉格朗日点又称平动点,在天体力学中是限制性三体问题的五个特解。这些点的存在由瑞士数学家欧拉于1767年推算出前三个,法国数学家拉格朗日于1772年推导证明剩下两个。在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向。每个稳定点同两大物体所在的点构成一个等边三角形。

7. 拉格朗日点l2受力分析

拉格朗日点是三体意义下的一种平衡点,在拉格朗日点,第三体受到的另外两个物体的引力合力为零。如果稍微偏离平衡点,第三体就会受到一个大概指向拉格朗日点方向的合力,类似于绕天体中心的万有引力。从而可以得到环绕拉格朗日点的晕轨道。

8. 地球和月球之间引力平衡的拉格朗日点

拉格郎日点与其它的两个天体是等边三角形的关系,所以地日拉格郎日点距地球是38万公里,地日的是1.49亿公里。

日地拉格朗日点:

L1、L2距离地球150万km,L3、L4距离地球1a.u.,L5距离地球2a.u.。地月拉格朗日点:

L1、L2距离月球6.5万km,距离地球分别为38.4±6.5万km,L3、L4、L5距离地球一个地月距离,也就是38.4万km。

拉格朗日点共有五个,现在大多在利用L2点,地月L2点在地球-月球连接线上,离地球445000公里,离月球65000公里,嫦娥所到的是地日L2点:离地球1500000公里,离太阳才是1.49亿公里+1500000公里。

下一篇:斯拉格精灵动漫(斯拉格精灵动漫第二季)
上一篇:地日拉格朗日点(地日拉格朗日点 卫星)