主页 > 啤酒分类 > 拉格

拉格朗日极值法(拉格朗日极值法怎么判断极大极小)

啤酒之家 2023-01-02 05:39 编辑:admin 65阅读

1. 拉格朗日极值法怎么判断极大极小

在数学最优化问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个矢量的系数。

引入新变量拉格朗日乘数,即可求解拉格朗日方程

此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。

2. 拉格朗日函数怎么判断极大极小值

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。假定x0处二阶导数大于0。

由连续性,在x0的邻域内,二阶导数恒正,一阶导数递增,那么x0左侧一阶导数就0,原函数f(x)左减右增,f(x0)极小.类似导论另一种情形,二阶导数在讨论极值时,没有直接的解释,而是在讨论函数凹凸性时有直接意义:二阶导数大于0,函数凹,二阶导数小于0。

扩展资料:

二阶导数原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。

极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。

3. 拉格朗日函数判断极大值极小值

点击分析-描述统计-频率-选择好变量-点击统计量-里面有均值,标准差,方差,中值、最大值、最小值,选择你需要的然后打钩.三线表是之前的数据形成表格后,双击表格,右击表格外观,点击academic,点击确定即可,

4. 拉格朗日条件极值怎么判断是极大值极小值

约瑟夫·拉格朗日

外文名

Joseph-Louis Lagrange

别名

拉格朗日

性别

出生日期

1736年

去世日期

1813年4月10日

国籍

法国

出生地

意大利都灵

职业

数学家

物理学家

代表作品

《关于解数值方程》和《关于方程的代数解法的研究》

主要成就

拉格朗日中值定理等

数学分析的开拓者

5. 拉格朗日函数如何判断极值

首先你要知道什么叫做极值点,所谓极值点就是在它周围(周围包括左边和右边)足够小的范围内,它是最大值或者最小值。

对于有些函数很完美,连续,并且一阶二阶可导,比如说基础函数,这些函数你可以用二阶导数方法去判断~~~有些函数虽然你连续,但是不可导,比如y=绝对值x,在x=0地方连续,但是不可导,但是他也是极值点,因为它比周围的都小,是极小值。在有一些函数既不连续也不可导,但也可能是极值点,比如分段函数:当x不等于0时y=1,当x等于0时,y=2,那么在x=0位置上,函数不连续,但是它确实极小值~~总之一句话~~判断是不是极值,跟连续可导什么的没有关系~~只要它比周围足够小的范围内大或者小就可以了~~~

6. 拉格朗日乘数法怎么判断极大极小值

拉格朗日乘数的数值是按照实际演算获取的,不排除为0的可能性。根据推导过程可知,λ是不可以等于0的。

1.如果等于0,f对x求导,就是原函数对x求导

2.f对y求导,就是原函数对y求导

3.上面两个式子一般是不可能解出来的 由拉格朗日乘数法的推导过程可以看出,λ≠0,否则驻点(x0,y0)满足的式子就变成了

4.f对x的偏导=0

5.f对y的偏导=0

6.f对λ的偏导=0

7.前面两个式子一般是不成立的。

8.求z=xy^2在x^2+y^2=1下的极值?一般应该是求最大值、最小值!

9.一种方法是化成一元函数的极值z=x(1-x^2),-1≤x≤1.

10.用拉格朗日乘数法的话,设L(x,y)=xy^2+λ(x^2+y^2-1),解方程组

11.y^2+2λx=0

12.2xy+2λy=0

13.x^2+y^2=1

14.前两个方程求出x=-λ,y^2=2λ^2,代入第三个式子得λ=±1/√3,所以x=±1/√3,y=±√(2/3),比较4个驻点处的函数值可得最大值和最小值

7. 拉格朗日乘数法判断极小还是极大

拉格郎日乘数法的适用条件是乘数不等于0。

求最值(最值是某个区间的最大或最小,注意最大/最小可能有同值的多个,所以也不唯一哈,极值是一个小范围,很小很小,内的最值).因为最值总是发生在极值点+区间边界点+间断点处,所以可以用拉朗乘数求出极值,用边界和间断点极限求出可疑极值,比较他们的大小,就可以找到区间内的最值了.特别地,若函数在区间内用拉朗求出仅一个极值,切很易判定没有其他可疑极值点,就可以直接判断那个极值是最值;或者可以判断函数在所给区间内单调(比如exp(x^2+y^2)在(x>0,y>0)时单调递增),就不用求极值(因为没有),直接求区间边界(或者间断点,有间断点也可以单调的)作为最值。

8. 拉格朗日乘数法怎么判断是极大值还是极小值

在这里xyz都是自变量,

V=xyz就是一个多元函数,并不是方程,

x,y,z的变化都会使V发生变化

没错,xyz满足了条件

φ(x,y,z)=2xy+2yz+2xz-a^2=0

你当然可以把其中一个用另外两个来表示,

再带回到V=xyz中,

然后只求偏导两次就可以了

9. 拉格朗日乘数法求的是极大值还是极小值

拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的 多元函数的 极值的方法。

这种方法将一个有n 个变量与k 个 约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。此方法的证明牵涉到偏微分, 全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值

10. 怎么知道拉格朗日的结果是极大值还是极小值

二元函数无条件极值中A>0为极小,A<0为极大

这个用二元函数的泰勒展开式就很好理解及证明了:

f(x,y) = f(a,b) + f'x(a,b)(x - a) + f'y(a,b)(y - b) + 1/2*[f"xx(a,b)(x-a)^2 + f"yy(a,b)(y-b)^2 + 2f"xy(a,b)(x-a)(y-b)] + h , 这里h为余项

=f(a,b) + f'x(a,b)(x - a) + f'y(a,b)(y - b) + 1/2*[A(x-a)^2 + C(y-b)^2 + 2B(x-a)(y-b)] + h

由于f'x(a,b)=f'y(a,b)=0,

因此上式=f(a,b)+1/2*[A(x-a)^2 + C(y-b)^2 + 2B(x-a)(y-b)] + h

在极小值点的邻域,其值都比它大。所以极小值点相当于在邻域内A(x-a)^2 + C(a,b)(y-b)^2 + 2B(x-a)(y-b) 恒大于0.

把它看成是x-a的2次式,恒大于0,表明A>0,且判别式小于0.即为(2B)^2-4AC<0,故有AC-B^2>0

极大值点同理,只是需要A<0即可。

下一篇:拉格朗日点计算(拉格朗日点计算式)
上一篇:菲拉格慕杨幂(菲拉格慕杨幂同款)