1. 用拉格朗日
这个定理是高数中比较基础且比较难的问题。一般是证明题中运用得比较多。比如说证明一个不等式。需要用到公式中的,切记这个是满足区间中的任意数,要正确理解任意的含义。 举一个证明的列子,书上也出现过的。证明(b-a)/b<lnb-lna<(b-a)/a要正确证明这个题,要先构造一个函数f(x)=lnx,然后运用拉格朗日中值定理。
2. 用拉格朗日中值定理证明柯西中值定理
如果函数f(x)及F(x)满足:
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
(3)对任一x∈(a,b),F'(x)≠0,
那么在(a,b)内至少有一点ζ,使等式
[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。
柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。
3. 用拉格朗日中值定理证明不等式
辅助函数法:
已知 在 上连续,在开区间 内可导,
构造辅助函数
可得又因为 在 上连续,在开区间 内可导,
所以根据罗尔定理可得必有一点 使得
由此可得
变形得
定理证毕。
4. 用拉格朗日中值定理证明a-b/a左=AB+A非B+AB非=AB+AB+A非B+AB非=(AB+A非B)+(AB+AB非)=(A+A非)B+(B+B非)A=B+A=右证毕
5. 用拉格朗日中值定理证明e^x>ex
证明如下:如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a)示意图令f(x)为y,所以该公式可写成△y=f'(x+θ△x)*△x (0
6. 用拉格朗日定理证明a-b/a
拉格朗日定理存在于多个学科领域中,分别为:流体力学中的拉格朗日定理;微积分中的拉格朗日定理;数论中的拉格朗日定理;群论中的拉格朗日定理。
正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志。 如果在一个正整数的因数分解式中,没有一个数有形式如4k+3的质数次方,该正整数可以表示成两个平方数之和。
7. 用拉格朗日中值定理求极限
1、打开matlab软件,如图中所示。
2、打开后如下。
3、清空我们的界面和工作空间:clear; %清空工作空间,clc; %清空工作界面。
4、定义一个符号变量,syms x;。
5、定义一个函数,比如:y=(1-exp(1/x))/(x+exp(1/x))。
6、求解极限值,输入一下指令,lim_y=limit(y,x,0,'right')。
7、查看我们的结果,ezplot(y2,[-4,4]),grid on,title('y=(1-exp(1/x))/(x+exp(1/x))');。
8、如图,这是我们的解图。
8. 用拉格朗日乘数法求极值如何判断是极大值
拉格朗日乘数原理(即拉格朗日乘数法)由用来解决有约束极值的一种方法。
有约束极值:举例说明,函数 z=x^2+y^2 的极小值在x=y=0处取得,且其值为零。如果加上约束条件 x+y-1=0,那么在要求z的极小值的问题就叫做有约束极值问题。
上述问题可以通过消元来解决,例如消去x,则变成
z=(y-1)^2+y^2
则容易求解。
但如果约束条件是(x+1)^2+(y-1)^2-5=0,此时消元将会很繁,则须用拉格朗日乘数法,过程如下:
令
f=x^2+y^2+k*((y-1)^2+y^2)
令
f对x的偏导=0
f对y的偏导=0
f对k的偏导=0
解上述三个方程,即可得到可让z取到极小值的x,y值。
拉格朗日乘数原理在工程中有广泛的应用,以上只简单地举一例,更复杂的情况(多元函数,多限制条件)可参阅高等数学教材。
9. 用拉格朗日乘子法计算在两个等式约束条件
1、如果x>y,那么yy;(对称性);
2、如果x>y,y>z;那么x>z;(传递性);
3、如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;
4、如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;
5、如果x>y,z<0,那么xz
6、如果x>y,m>n,那么x+m>y+n;
7、如果x>y>0,m>n>0,那么xm>yn;
8、如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂
10. 用拉格朗日方程法不能进行阻尼振动系统的建模
当计算一些数值比较大的计算题时,可以用拉格朗日乘数法
左=AB+A非B+AB非=AB+AB+A非B+AB非=(AB+A非B)+(AB+AB非)=(A+A非)B+(B+B非)A=B+A=右证毕
5. 用拉格朗日中值定理证明e^x>ex
证明如下:如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a)示意图令f(x)为y,所以该公式可写成△y=f'(x+θ△x)*△x (0
6. 用拉格朗日定理证明a-b/a
拉格朗日定理存在于多个学科领域中,分别为:流体力学中的拉格朗日定理;微积分中的拉格朗日定理;数论中的拉格朗日定理;群论中的拉格朗日定理。
正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志。 如果在一个正整数的因数分解式中,没有一个数有形式如4k+3的质数次方,该正整数可以表示成两个平方数之和。
7. 用拉格朗日中值定理求极限
1、打开matlab软件,如图中所示。
2、打开后如下。
3、清空我们的界面和工作空间:clear; %清空工作空间,clc; %清空工作界面。
4、定义一个符号变量,syms x;。
5、定义一个函数,比如:y=(1-exp(1/x))/(x+exp(1/x))。
6、求解极限值,输入一下指令,lim_y=limit(y,x,0,'right')。
7、查看我们的结果,ezplot(y2,[-4,4]),grid on,title('y=(1-exp(1/x))/(x+exp(1/x))');。
8、如图,这是我们的解图。
8. 用拉格朗日乘数法求极值如何判断是极大值
拉格朗日乘数原理(即拉格朗日乘数法)由用来解决有约束极值的一种方法。
有约束极值:举例说明,函数 z=x^2+y^2 的极小值在x=y=0处取得,且其值为零。如果加上约束条件 x+y-1=0,那么在要求z的极小值的问题就叫做有约束极值问题。
上述问题可以通过消元来解决,例如消去x,则变成
z=(y-1)^2+y^2
则容易求解。
但如果约束条件是(x+1)^2+(y-1)^2-5=0,此时消元将会很繁,则须用拉格朗日乘数法,过程如下:
令
f=x^2+y^2+k*((y-1)^2+y^2)
令
f对x的偏导=0
f对y的偏导=0
f对k的偏导=0
解上述三个方程,即可得到可让z取到极小值的x,y值。
拉格朗日乘数原理在工程中有广泛的应用,以上只简单地举一例,更复杂的情况(多元函数,多限制条件)可参阅高等数学教材。
9. 用拉格朗日乘子法计算在两个等式约束条件
1、如果x>y,那么yy;(对称性);
2、如果x>y,y>z;那么x>z;(传递性);
3、如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;
4、如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;
5、如果x>y,z<0,那么xz
6、如果x>y,m>n,那么x+m>y+n;
7、如果x>y>0,m>n>0,那么xm>yn;
8、如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂
10. 用拉格朗日方程法不能进行阻尼振动系统的建模
当计算一些数值比较大的计算题时,可以用拉格朗日乘数法