1. 拉格朗日求导例题
罗尔中值定理能推出拉格朗日中值定理和柯西中值定理,反过来拉格朗日中值定理和柯西中值定理也可以推出罗尔中值定理。
泰勒中值定理是由柯西中值定理推出来的。泰勒中值定理在一阶导数情形就是拉格朗日中值定理。
罗比达法则是柯西中值定理在求极限时应用。
2. 拉格朗日函数求偏导
求x的偏导数就是把x以外的自变量当作常数,然后进行正态导数。下面是步骤:偏导数:在数学中,多元函数的偏导数是它相对于一个变量的导数,同时保持其他变量不变(相对于全导数,其中所有变量都允许变化)。
偏导数在向量分析和微分几何中非常有用。把x看成变量,把Y看成常数,这是一元函数的导数问题。部分推导过程如下只要把z理解为关于x的函数。
3. 对拉格朗日函数求导
在分析力学里,一个动力系统的 拉格朗日函数,是描述整个物理系统的动力状态的函数,对于一般经典物理系统,通常定义为动能减去势能,以方程表示为
拉格朗日函数
拉格朗日函数
拉格朗日函数
拉格朗日函数
其中, 为拉格朗日量, 为动能, 为势能。
在分析力学里,假设已知一个系统的拉格朗日函数,则可以将拉格朗日量直接代入拉格朗日方程,稍加运算,即可求得此系统的运动方程。
4. 拉格朗日定理例题详解
拉格朗日插值是一种多项式插值方法。是利用最小次数的多项式来构建一条光滑的曲线,使曲线通过所有的已知点。
例如,已知如下3点的坐标:(x1,y1),(x2,y2),(x3,y3).那么结果是:y=y1 L1+y2 L2+y3 L3,L1=(x-x2)(x-x3)/((x1-x2)(x1-x3)),L2=(x-x1)(x-x3)/((x2-x1)(x2-x3)),L3=(x-x1)(x-x2)/((x3-x1)(x3-x2)).
5. 拉格朗日定理例题
拉格朗日中值定理是微积分中的重要定理之一,大多数是利用罗尔中值定理构建辅助函数来证明的。
扩展资料
拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的.整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。
法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。
6. 拉格朗日定理ppt
拉格朗日定理的意义如下:
1、拉格朗日中值定理是微分中值定理的核心,其他中值定理是拉格朗日中值定理的特殊情况和推广,它是微分学应用的桥梁,在理论和实际中具有极高的研究价值。
2、几何意义: 若连续曲线在 两点间的每一点处都有不垂直于x轴的切线,则曲线在A,B间至少存在1点 ,使得该曲线在P点的切线与割线AB平行。
3、运动学意义:对于曲线运动在任意一个运动过程中至少存在一个位置(或一个时刻)的瞬时速率等于这个过程中的平均速率。拉格朗日中值定理在柯西的微积分理论系统中占有重要的地位。可利用拉格朗日中值定理对洛必达法则进行严格的证明,并研究泰勒公式的余项。从柯西起,微分中值定理就成为研究函数的重要工具和微分学的重要组成部分。
7. 拉格朗日导数题
拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。
直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。
在进入都灵皇家炮兵学院学习后,拉格朗日开始有计划地自学数学。由于勤奋刻苦,他的进步很快,尚未毕业就担任了该校的数学教学工作。20岁时就被正式聘任为该校的数学副教授。从这一年起,拉格朗日开始研究“极大和极小”的问题。他采用的是纯分析的方法。1758年8月,他把自己的研究方法写信告诉了欧拉,欧拉对此给予了极高的评价。从此,两位大师开始频繁通信,就在这一来一往中,诞生了数学的一个新的分支——变分法。
1759年,在欧拉的推荐下,拉格朗日被提名为柏林科学院的通讯院士。接着,他又当选为该院的外国院士。
1762年,法国科学院悬赏征解有关月球何以自转,以及自转时总是以同一面对着地球的难题。拉格朗日写出一篇出色的论文,成功地解决了这一问题,并获得了科学院的大奖。拉格朗日的名字因此传遍了整个欧洲,引起世人的瞩目。两年之后,法国科学院又提出了木星的4个卫星和太阳之间的摄动问题的所谓“六体问题”。面对这一难题,拉格朗日毫不畏惧,经过数个不眠之夜,他终于用近似解法找到了答案,从而再度获奖。这次获奖,使他赢得了世界性的声誉。
1766年,拉格朗日接替欧拉担任柏林科学院物理数学所所长。在担任所长的20年中,拉格朗日发表了许多论文,并多次获得法国科学院的大奖:1722年,其论文《论三体问题》获奖;1773年,其论文《论月球的长期方程》再次获奖;1779年,拉格朗日又因论文《由行星活动的试验来研究彗星的摄动理论》而获得双倍奖金。
在柏林科学院工作期间,拉格朗日对代数、数论、微分方程、变分法和力学等方面进行了广泛而深入的研究。他最有价值的贡献之一是在方程论方面。他的“用代数运算解一般n次方程(n4)是不能的”结论,可以说是伽罗华建立群论的基础。
8. 拉格朗日求导公式
对于无约束条件的函数求极值,主要利用导数求解法
例如求解函数f(x,y)=x3-4x2+2xy-y2+1的极值。步骤如下:
(1)求出f(x,y)的一阶偏导函数f’x(x,y),f’y(x,y)。
f’x(x,y) = 3x2-8x+2y
f’y(x,y) = 2x-2y
(2)令f’x(x,y)=0,f’y(x,y)=0,解方程组。
3x2-8x+2y = 0
2x-2y = 0
得到解为(0,0),(2,2)。这两个解是f(x,y)的极值点。
9. 拉格朗日求偏导
求极限常用等价无穷小替代、洛必达法则、泰勒公式等方法,有时候等价无穷小不能用,洛必达法则过于繁琐,泰勒公式法虽然强大但是相对麻烦。对有一些形式,使用拉格朗日中值定理非常便捷。下面举两个个例子:
这种形式的式子,很明显直接使用等价无穷小是不行的,洛必达法则又麻烦至极,泰勒公式做起来也不轻松。
我们发现上述式子有这样的特点:右侧减法式子里,两项的形式都非常类似,并且随着极限的趋向,两项越来越接近。这时候我们可以使用拉格朗日中值定理处理这个减法式子。
于是上述式子就可以变成(恒等变换):
这个时候,随着x的增大,可以发现,拉格朗日中值定理作用的区间越来越小,最终可以确定
然后接下来就非常好办了
上面的式子有这样的共性:1.存在两项相减因式且形式相同;2.随着x的变化,因式的两项越来越接近(
所在区间变小)