主页 > 啤酒分类 > 拉格

拉格朗日求极值例题(拉格朗日求极值的题型)

啤酒之家 2023-01-06 13:28 编辑:admin 299阅读

1. 拉格朗日求极值的题型

对于无约束条件的函数求极值,主要利用导数求解法

例如求解函数f(x,y)=x3-4x2+2xy-y2+1的极值。步骤如下:

(1)求出f(x,y)的一阶偏导函数f’x(x,y),f’y(x,y)。

f’x(x,y) = 3x2-8x+2y

f’y(x,y) = 2x-2y

(2)令f’x(x,y)=0,f’y(x,y)=0,解方程组。

3x2-8x+2y = 0

2x-2y = 0

得到解为(0,0),(2,2)。这两个解是f(x,y)的极值点。

2. 拉格朗日定理求极值

这个定理是高数中比较基础且比较难的问题。一般是证明题中运用得比较多。比如说证明一个不等式。需要用到公式中的,切记这个是满足区间中的任意数,要正确理解任意的含义。 举一个证明的列子,书上也出现过的。证明(b-a)/b<lnb-lna<(b-a)/a要正确证明这个题,要先构造一个函数f(x)=lnx,然后运用拉格朗日中值定理。

3. 有条件求极值拉格朗日

构造函数4a+b+m(a^2+b^2+c^2-3)

对函数求偏导并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同时a^2+b^2+c^2=3

所以

m=根号17/2根号3

a=-4根号3/根号17

b=-根号3/根号17

4a+b=-根号51

1、是求极值的,不是求最值的

2、如果要求最值,要把极值点的函数值和不可导点的函数值还有端点函数值进行比较

3、书上说是可能的极值点,这个没错,比如f(x)=x^3,在x=0点导数确实为0,但是不是极值点,所以是可能的极值点,到底是不是要带入原函数再看

4. 拉格朗日求最值的题型

拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。

直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。

在进入都灵皇家炮兵学院学习后,拉格朗日开始有计划地自学数学。由于勤奋刻苦,他的进步很快,尚未毕业就担任了该校的数学教学工作。20岁时就被正式聘任为该校的数学副教授。从这一年起,拉格朗日开始研究“极大和极小”的问题。他采用的是纯分析的方法。1758年8月,他把自己的研究方法写信告诉了欧拉,欧拉对此给予了极高的评价。从此,两位大师开始频繁通信,就在这一来一往中,诞生了数学的一个新的分支——变分法。

1759年,在欧拉的推荐下,拉格朗日被提名为柏林科学院的通讯院士。接着,他又当选为该院的外国院士。

1762年,法国科学院悬赏征解有关月球何以自转,以及自转时总是以同一面对着地球的难题。拉格朗日写出一篇出色的论文,成功地解决了这一问题,并获得了科学院的大奖。拉格朗日的名字因此传遍了整个欧洲,引起世人的瞩目。两年之后,法国科学院又提出了木星的4个卫星和太阳之间的摄动问题的所谓“六体问题”。面对这一难题,拉格朗日毫不畏惧,经过数个不眠之夜,他终于用近似解法找到了答案,从而再度获奖。这次获奖,使他赢得了世界性的声誉。

1766年,拉格朗日接替欧拉担任柏林科学院物理数学所所长。在担任所长的20年中,拉格朗日发表了许多论文,并多次获得法国科学院的大奖:1722年,其论文《论三体问题》获奖;1773年,其论文《论月球的长期方程》再次获奖;1779年,拉格朗日又因论文《由行星活动的试验来研究彗星的摄动理论》而获得双倍奖金。

在柏林科学院工作期间,拉格朗日对代数、数论、微分方程、变分法和力学等方面进行了广泛而深入的研究。他最有价值的贡献之一是在方程论方面。他的“用代数运算解一般n次方程(n4)是不能的”结论,可以说是伽罗华建立群论的基础。

5. 拉格朗日法求极限例题

拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的 多元函数的 极值的方法。

这种方法将一个有n 个变量与k 个 约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。

这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。

此方法的证明牵涉到偏微分, 全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。

6. 拉格朗日法求极值快速求解

拉格朗日乘数法是多元微分学中用来求函数z=f(x,y)在满足g(x,y)=0条件下的极值问题的方法:通过设F(x,y)=f(x,y)+λg(x,y),其中λ称为拉格朗日乘数,并求F(x,y)的极值点求得条件极值的方法

7. 拉格朗日求极值的例题

拉格朗日中值定理可以看成是中间有点的导数值等于连接起点终点直线的斜率,就是中间那一点的切线斜率等于连接那两点直线的斜率(就是平行了)

8. 拉格朗日不等式求极值

这里用的是导数的定义,不是拉格朗日中值定理,虽然有点象,但其本质是不一样的。当然,拉格拉日中值定理只要原函数在开区间内可导,在闭区间内连续就可以了,没有要求导函数一定要连续

9. 什么时候用拉格朗日求极值

判断是极大值还是极小值点,一个初步的方法是依靠经验和对问题的认识。当不能作出有效判断时,可以求取函数的二阶导数进行判断,其实一个简单的方法是比较该极值点的函数值与相邻点的函数来作出判断。

至于存在不能化为无条件极值的问题,一般是先不管约束条件建立求解极值点的方程,然后再限制在约束条件下求出最后解答,具体的过程,建议参看变分原理等数学或力学书籍,如《计算动力学》中就有提到,不过这本书不是纯粹的数学推演。

10. 拉格朗日乘数法求条件极值例题

拉格朗日乘数的数值是按照实际演算获取的,不排除为0的可能性。根据推导过程可知,λ是不可以等于0的。

1.如果等于0,f对x求导,就是原函数对x求导

2.f对y求导,就是原函数对y求导

3.上面两个式子一般是不可能解出来的 由拉格朗日乘数法的推导过程可以看出,λ≠0,否则驻点(x0,y0)满足的式子就变成了

4.f对x的偏导=0

5.f对y的偏导=0

6.f对λ的偏导=0

7.前面两个式子一般是不成立的。

8.求z=xy^2在x^2+y^2=1下的极值?一般应该是求最大值、最小值!

9.一种方法是化成一元函数的极值z=x(1-x^2),-1≤x≤1.

10.用拉格朗日乘数法的话,设L(x,y)=xy^2+λ(x^2+y^2-1),解方程组

11.y^2+2λx=0

12.2xy+2λy=0

13.x^2+y^2=1

14.前两个方程求出x=-λ,y^2=2λ^2,代入第三个式子得λ=±1/√3,所以x=±1/√3,y=±√(2/3),比较4个驻点处的函数值可得最大值和最小值

下一篇:卡尔拉格斐品牌官网(卡尔拉格斐哪里有专卖店)
上一篇:菲拉格慕男士腰带尺寸(菲拉格慕男士腰带宽度)