1. 高中拉格朗日乘数法
拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的 多元函数的 极值的方法。
这种方法将一个有n 个变量与k 个 约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。
这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。
此方法的证明牵涉到偏微分, 全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。
2. 高中数学拉格朗日乘数法
在这里xyz都是自变量,
V=xyz就是一个多元函数,并不是方程,
x,y,z的变化都会使V发生变化
没错,xyz满足了条件
φ(x,y,z)=2xy+2yz+2xz-a^2=0
你当然可以把其中一个用另外两个来表示,
再带回到V=xyz中,
然后只求偏导两次就可以了
3. 拉格朗日乘数法实际应用
拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的 多元函数的 极值的方法。
这种方法将一个有n 个变量与k 个 约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。此方法的证明牵涉到偏微分, 全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值
4. 高中拉格朗日乘数法例题
拉格朗日乘数法解法:在数学最优问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。
这种方法将一个有n个变量与k个约束条件的最优化问题转换为一个有n+k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。
5. 高数下拉格朗日乘数法
拉格朗日乘数的数值是按照实际演算获取的,不排除为0的可能性。根据推导过程可知,λ是不可以等于0的。
1.如果等于0,f对x求导,就是原函数对x求导
2.f对y求导,就是原函数对y求导
3.上面两个式子一般是不可能解出来的 由拉格朗日乘数法的推导过程可以看出,λ≠0,否则驻点(x0,y0)满足的式子就变成了
4.f对x的偏导=0
5.f对y的偏导=0
6.f对λ的偏导=0
7.前面两个式子一般是不成立的。
8.求z=xy^2在x^2+y^2=1下的极值?一般应该是求最大值、最小值!
9.一种方法是化成一元函数的极值z=x(1-x^2),-1≤x≤1.
10.用拉格朗日乘数法的话,设L(x,y)=xy^2+λ(x^2+y^2-1),解方程组
11.y^2+2λx=0
12.2xy+2λy=0
13.x^2+y^2=1
14.前两个方程求出x=-λ,y^2=2λ^2,代入第三个式子得λ=±1/√3,所以x=±1/√3,y=±√(2/3),比较4个驻点处的函数值可得最大值和最小值
6. 拉格朗日乘数法 高中
构造函数4a+b+m(a^2+b^2+c^2-3)
对函数求偏导并令其等于0
4+2ma=0
1+2mb=0
2mc=0
同时a^2+b^2+c^2=3
所以
m=根号17/2根号3
a=-4根号3/根号17
b=-根号3/根号17
4a+b=-根号51
1、是求极值的,不是求最值的
2、如果要求最值,要把极值点的函数值和不可导点的函数值还有端点函数值进行比较
3、书上说是可能的极值点,这个没错,比如f(x)=x^3,在x=0点导数确实为0,但是不是极值点,所以是可能的极值点,到底是不是要带入原函数再看
7. 拉格朗日乘数法解高考题
拉格朗日乘数法是多元微分学中用来求函数z=f(x,y)在满足g(x,y)=0条件下的极值问题的方法:通过设F(x,y)=f(x,y)+λg(x,y),其中λ称为拉格朗日乘数,并求F(x,y)的极值点求得条件极值的方法
8. 拉格朗日乘子法高数
你可能问的是如何求一个矩阵的特征值及特征向量吧!要求一个矩阵的特征值及特征向量吧,第一步写出那个矩阵的特征多项式,第二步求特征多项式的根这也就是矩阵的特征值,第三步,对于每一个特征值求属于它的特征向量。
9. 用拉格朗日数乘法
这个定理是高数中比较基础且比较难的问题。一般是证明题中运用得比较多。比如说证明一个不等式。需要用到公式中的,切记这个是满足区间中的任意数,要正确理解任意的含义。 举一个证明的列子,书上也出现过的。证明(b-a)/b<lnb-lna<(b-a)/a要正确证明这个题,要先构造一个函数f(x)=lnx,然后运用拉格朗日中值定理。