1. 地球拉格朗日点l3
嫦娥二号卫星于2011年6月9日16时50分05秒在探月任务结束后飞离月球轨道,飞向第2拉格朗日点继续进行探测,飞行距离150万公里,预计需85天。北京时间2011年8月25日23时27分,经过77天的飞行,“嫦娥二号”在世界上首次实现从月球轨道出发,受控准确进入距离地球约150万公里远的、太阳与地球引力平衡点——拉格朗日L2点的环绕轨道。
2. 拉格朗日点 L4
又称平动点,一个小物体在两个大物体的引力作用下在空间中的一点,在该点处,小物体相对于两大物体基本保持静止。
这些点的存在由瑞士数学家欧拉于1767年推算出前三个,法国数学家拉格朗日于1772年推导证明剩下两个。每个稳定点同两大物体所在的点构成一个等边三角形。
3. 地球拉格朗日点l2
拉格朗日点是三体意义下的一种平衡点,在拉格朗日点,第三体受到的另外两个物体的引力合力为零。如果稍微偏离平衡点,第三体就会受到一个大概指向拉格朗日点方向的合力,类似于绕天体中心的万有引力。从而可以得到环绕拉格朗日点的晕轨道。
4. 拉格朗日点L4L5
[拉格朗日(Lagrange)中值定理]若函数f(x)满足条件:
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导,则在(a,b)内至少存在一点ξ,使得
显然,罗尔定理是拉格朗日中值定理当f(a)=f(b)时的特殊情形,拉格朗日中值定理是罗尔定理的推广。
5. 稳定的拉格朗日点L4
拉格朗日法是描述流体运动的两种方法之一,又称随体法,跟踪法。
是研究流体各个质点的运动参数(位置坐标、速度、加速度等)随时间的变化规律。综合所有流体质点运动参数的变化,便得到了整个流体的运动规律。
在研究波动问题时,常用拉格朗日法
6. 拉格朗日点 地球
拉格郎日点与其它的两个天体是等边三角形的关系,所以地日拉格郎日点距地球是38万公里,地日的是1.49亿公里。
日地拉格朗日点:
L1、L2距离地球150万km,L3、L4距离地球1a.u.,L5距离地球2a.u.。地月拉格朗日点:
L1、L2距离月球6.5万km,距离地球分别为38.4±6.5万km,L3、L4、L5距离地球一个地月距离,也就是38.4万km。
拉格朗日点共有五个,现在大多在利用L2点,地月L2点在地球-月球连接线上,离地球445000公里,离月球65000公里,嫦娥所到的是地日L2点:离地球1500000公里,离太阳才是1.49亿公里+1500000公里。
7. 地日拉格朗日点L3
拉格朗日点有5个,但只有两个是稳定的。
拉格朗日点又称平动点,在天体力学中是限制性三体问题的五个特解。这些点的存在由瑞士数学家欧拉于1767年推算出前三个,法国数学家拉格朗日于1772年推导证明剩下两个。在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向。每个稳定点同两大物体所在的点构成一个等边三角形。
8. 拉格朗日点l4和l5点求解
拉格朗日点指受两大物体引力作用下,能使小物体稳定的点. 一个小物体在两个大物体的引力作用下在空间中的一点,在该点处,小物体相对于两大物体基本保持静止。这些点的存在由法国数学家拉格朗日于1772年推导证明的。1906年首次发现运动于木星轨道上的小行星(见脱罗央群小行星)在木星和太阳的作用下处于拉格朗日点上。
在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向。
每个稳定点同两大物体所在的点构成一个等边三角.