1. 拉格朗日积分要求流动为无旋
[拉格朗日(Lagrange)中值定理]若函数f(x)满足条件:
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导,则在(a,b)内至少存在一点ξ,使得
显然,罗尔定理是拉格朗日中值定理当f(a)=f(b)时的特殊情形,拉格朗日中值定理是罗尔定理的推广。
2. 流体力学拉格朗日积分
罗尔中值定理能推出拉格朗日中值定理和柯西中值定理,反过来拉格朗日中值定理和柯西中值定理也可以推出罗尔中值定理。
泰勒中值定理是由柯西中值定理推出来的。泰勒中值定理在一阶导数情形就是拉格朗日中值定理。
罗比达法则是柯西中值定理在求极限时应用。
3. 流体力学拉格朗日积分方程
约瑟夫·拉格朗日
外文名
Joseph-Louis Lagrange
别名
拉格朗日
性别
男
出生日期
1736年
去世日期
1813年4月10日
国籍
法国
出生地
意大利都灵
职业
数学家
物理学家
代表作品
《关于解数值方程》和《关于方程的代数解法的研究》
主要成就
拉格朗日中值定理等
数学分析的开拓者
4. 根据拉格朗日观点下的流体连续性方程
拉格朗日定理存在于多个学科领域中,分别为:流体力学中的拉格朗日定理;微积分中的拉格朗日定理;数论中的拉格朗日定理;群论中的拉格朗日定理。
正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志。 如果在一个正整数的因数分解式中,没有一个数有形式如4k+3的质数次方,该正整数可以表示成两个平方数之和。
5. 流体运动由拉格朗日变量表示为
拉格朗日法是描述流体运动的两种方法之一,又称随体法,跟踪法。
是研究流体各个质点的运动参数(位置坐标、速度、加速度等)随时间的变化规律。综合所有流体质点运动参数的变化,便得到了整个流体的运动规律。
在研究波动问题时,常用拉格朗日法