主页 > 啤酒分类 > 拉格

第一拉格朗日(第一拉格朗日中值定理)

啤酒之家 2023-01-25 01:59 编辑:admin 272阅读

1. 第一拉格朗日中值定理

拉格朗日中值定理是微分学中的基本定理之一,它反应了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。表达式f(b)-f(a)=f'(ξ)(b-a)(a<ξ<b)。

2. 拉格朗日中值定理ξ唯一

朗格拉日中值定理的中值在两个端点之间。

3. 叙述拉格朗日中值定理

公式,f(b)-f(a)=f'(ξ)(b-a)(a<ξ<b)

定义,如果函数f(x)满足:

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导;

那么在开区间(a,b)内至少有一点使等式成立。

4. 拉格朗日中值定理在

把拉格朗日定理移项,得f(x)-[f(b)-f(a)]/(b-a)*(x-a)=0,令u(x)等于等号左边的函数。

于是有u(a)=u(b)=f(a),这就满足了罗尔定理。

罗尔定理是:在[a,b]上满足u(a)=u(b)时,一定存在m属于(a,b)使u(x)的导数等于0。

这些条件现在都满足了,而且对u(x)求导后,经过简单移项,立刻就可得到拉格朗日中值定理的式子。罗尔定理是拉格朗日中值定理在f(a)=f(b)时的特殊情况。

5. 拉格朗日中值定理的理解

人们对拉格朗日中值定理的认识可以上溯到公元前古希腊时代。古希腊数学家在几何研究中得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的底”。这正是拉格朗日定理的特殊情况,古希腊数学家阿基米德正是巧妙地利用这一结论,求出抛物弓形的面积.。

意大利卡瓦列里在《不可分量几何学》(1635年)的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦。这是几何形式的微分中值定理,被人们称为卡瓦列里定理。该定理是拉格朗日中值定理在几何学中的表达形式。

1797年,法国数学家拉格朗日在《解析函数论》一书中首先给出了拉格朗日定理,他给出的定理的最初形式是:“函数 在 与 之间连续, 在 与 之间有最小值 与最大值 ,则 必取 与 之间的一个值。”拉格朗日给出最初的证明,但证明并不严格,他给的条件比现在的条件要强,他要求函数 在闭区间上具有连续导数 ,并且他所用的连续也是直观的,而不是抽象的。

十九世纪初,在微积分严格化运动中,柯西给出了拉格朗日中值定理的严格证明,在《无穷小计算教程概论》中,柯西证明了”如果导数 在闭区间 上连续,则必存在一点 ,使得 。 ”柯西又在《微分计算教程》中将拉格朗日中值定理推广为柯西中值定理。

现代形式的拉格朗日中值定理是由法国数学家博(O.Bonnet)给出的,他不是利用导数 的连续性,而是利用罗尔定理对拉格朗日中值定理进行了重新证明。

6. 拉格朗日中值定理的内容

证明如下:如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a)示意图令f(x)为y,所以该公式可写成△y=f'(x+θ△x)*△x (0

7. 拉格朗日中值定理是

首先,由于点( a,f(a) )和点( b,f(b) )的连线方程是这样的 y=[ (f(b)-f(a))/(b-a) ](x-a)+f(a)

所以构造函数成两曲线距离d与x之间的关系即可:H(x)=f(x)-y (曲线减去直线)

由于两条线的起点与终点均重合,所以必然符合罗尔定理的条件H(a)=H(b),然后马上可以用罗尔定理证得.

思路:

1、拉格朗日中值定理其实就是罗尔定理的推广(或者说一般情况),而柯西中值定理就是拉格朗日中值定理的推广(或者说特殊情况).

2、罗尔定理的条件f(a)=f(b)就意味着是点( a,f(a) )和点( b,f(b) )的连线平行于坐标轴的情况,然后求函数f(x)的极值点(等价于求f'(k)=0的点)属于特殊情况.

而拉格朗日中值定理的情况是,罗尔定理的一般情况.( a,f(a) )和点( b,f(b) )的连线已经跟x轴产生夹角了,所以构造函数的时候就要把它的坐标轴转变一下.然后还是跟罗尔定理一样,求出函数H(x)的极值点即可.

8. 拉格朗日中值定理是啥

拉格朗日中值定理有一个变形,即所谓的有限增量公式:f(x0+Δx)-f(x0)=f'(x0+θΔx)Δx,0<θ<1。其中的

有一个很重要的性质:

点连续,且

,则

证明 由于f''(x)在

点连续,所以有

(1)

(2)

将(1)和(2)同时代入有限增量公式,可得

,,利用f"(x)在x0点处的连续性及f"(x0)≠0,在等式两边同取极限(令

),即可得结论。

9. 什么叫拉格朗日中值定理

拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。

法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。

定理表述

如果函数f(x)满足:

(1)在闭区间

上连续;

(2)在开区间

内可导;

那么在开区间 

内至少有一点

 使等式

 成立。

其他形式

 ,令

 ,则有

上式称为有限增量公式。

我们知道函数的微分

 是函数的增量Δy的近似表达式,一般情况下只有当

很小的时候,dy和Δy之间的近似度才会提高;而有限增量公式却给出了当自变量x取得有限增量Δx(

不一定很小)时,函数增量Δy的准确表达式,这就是该公式的价值所在。

下一篇:格桑拉百度云(格桑拉纯音乐mP3)
上一篇:九宫格特拉(九宫格世界)