主页 > 啤酒分类 > 拉格

柯西与拉格朗日(柯西拉格朗日积分)

啤酒之家 2023-01-30 12:13 编辑:admin 243阅读

1. 柯西拉格朗日积分

推广后的柯西积分定理和柯西积分公式条件一样,都是区域内解析,边界上连续就可以用;

但由于表达式的不同,柯西积分定理主要是用闭曲线上积分为0这个性质,也就是积分与路径无关,与实分析里的格林公式类似;

柯西积分公式则是利用闭曲线的积分计算曲线内部的函数值,没有积分为0这一条(因为积分公式的结构,被积函数在闭曲线内有一个奇点);

所以要利用积分与路径无关的话,用柯西积分定理,要计算函数值的话,用柯西积分公式。

2. 拉格朗日 积分

[拉格朗日(Lagrange)中值定理]若函数f(x)满足条件:

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导,则在(a,b)内至少存在一点ξ,使得

显然,罗尔定理是拉格朗日中值定理当f(a)=f(b)时的特殊情形,拉格朗日中值定理是罗尔定理的推广。

3. 拉格朗日微积分

在数学最优化问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个矢量的系数。

引入新变量拉格朗日乘数,即可求解拉格朗日方程

此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。

4. 拉格朗日不定积分

设给定二元函数z=ƒ(x,y)和附加条件φ(x,y)=0,为寻找z=ƒ(x,y)在附加条件下的极值点,先做拉格朗日函数,其中λ为参数。求L(x,y)对x和y的一阶偏导数,令它们等于零,并与附加条件联立,即

L'x(x,y)=ƒ'x(x,y)+λφ'x(x,y)=0,

L'y(x,y)=ƒ'y(x,y)+λφ'y(x,y)=0,

φ(x,y)=0

由上述方程组解出x,y及λ,如此求得的(x,y),就是函数z=ƒ(x,y)在附加条件φ(x,y)=0下的可能极值点。

5. 拉格朗日定积分

拉格朗日定理存在于多个学科领域中,分别为:流体力学中的拉格朗日定理;微积分中的拉格朗日定理;数论中的拉格朗日定理;群论中的拉格朗日定理。

正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志。 如果在一个正整数的因数分解式中,没有一个数有形式如4k+3的质数次方,该正整数可以表示成两个平方数之和。

6. 柯西拉格朗日积分的适用条件

判断是极大值还是极小值点,一个初步的方法是依靠经验和对问题的认识。当不能作出有效判断时,可以求取函数的二阶导数进行判断,其实一个简单的方法是比较该极值点的函数值与相邻点的函数来作出判断。

至于存在不能化为无条件极值的问题,一般是先不管约束条件建立求解极值点的方程,然后再限制在约束条件下求出最后解答,具体的过程,建议参看变分原理等数学或力学书籍,如《计算动力学》中就有提到,不过这本书不是纯粹的数学推演。

下一篇:唯品会菲拉格慕(唯品会菲拉格慕香水是正品吗)
上一篇:古拉姆奥格瑞玛(克罗米奥格瑞玛)