一、拉格朗日点l3反地球
嫦娥二号卫星于2011年6月9日16时50分05秒在探月任务结束后飞离月球轨道,飞向第2拉格朗日点继续进行探测,飞行距离150万公里,预计需85天。北京时间2011年8月25日23时27分,经过77天的飞行,“嫦娥二号”在世界上首次实现从月球轨道出发,受控准确进入距离地球约150万公里远的、太阳与地球引力平衡点——拉格朗日L2点的环绕轨道。
二、拉格朗日点 地球
拉格朗日点又称平动点,在天体力学中是限制性三体问题的五个特解。一个小物体在两个大物体的引力作用下在空间中的一点,在该点处,小物体相对于两大物体基本保持静止。这些点的存在由瑞士数学家欧拉于1767年推算出前三个,法国数学家拉格朗日于1772年推导证明剩下两个。
第一拉格朗日点位于两个物体的连线上。
三、地日拉格朗日点L3
拉格朗日点有5个,但只有两个是稳定的。
拉格朗日点又称平动点,在天体力学中是限制性三体问题的五个特解。这些点的存在由瑞士数学家欧拉于1767年推算出前三个,法国数学家拉格朗日于1772年推导证明剩下两个。在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向。每个稳定点同两大物体所在的点构成一个等边三角形。
四、行星拉格朗日点
又称平动点,在天体力学中是限制性三体问题的五个特解。一个小物体在两个大物体的引力作用下在空间中的一点,在该点处,小物体相对于两大物体基本保持静止。
这些点的存在由瑞士数学家欧拉于1767年推算出前三个,法国数学家拉格朗日于1772年推导证明剩下两个。1906年首次发现运动于木星轨道上的小行星(见特洛依群小行星)在木星和太阳的作用下处于拉格朗日点上。
在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向。
每个稳定点同两大物体所在的点构成一个等边三角形。
五、太阳拉格朗日点
款在只有中国在地日朗格拉日点有一个卫星。
六、太阳地球拉格朗日点
指受两大物体引力作用下,能使小物体稳定的点.一个小物体在两个大物体的引力作用下在空间中的一点,在该点处,小物体相对于两大物体基本保持静止.这些点的存在由法国数学家拉格朗日于1772年推导证明的.1906年首次发现运动于木星轨道上的小行星(见脱罗央群小行星)在木星和太阳的作用下处于拉格朗日点上.在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向.每个稳定点同两大物体所在的点构成一个等边三角.地球和月球之间的第一个拉格朗日点(L1)在离地球32.3万公里处,是到月球路程的84% 在那个点受到地球和月球引力的和为零 ,会始终处在月球和地球之间那个点 当然也算一起随着地球围着太阳转 太阳-地球系统的“第二拉格朗日点”在地球背向太阳一面的150万千米处 即L2
七、第三拉格朗日点
拉格朗日法是描述流体运动的两种方法之一,又称随体法,跟踪法。
是研究流体各个质点的运动参数(位置坐标、速度、加速度等)随时间的变化规律。综合所有流体质点运动参数的变化,便得到了整个流体的运动规律。
在研究波动问题时,常用拉格朗日法
八、太阳系的拉格朗日点
又称平动点,一个小物体在两个大物体的引力作用下在空间中的一点,在该点处,小物体相对于两大物体基本保持静止。
这些点的存在由瑞士数学家欧拉于1767年推算出前三个,法国数学家拉格朗日于1772年推导证明剩下两个。每个稳定点同两大物体所在的点构成一个等边三角形。
九、拉格朗日点距地球距离
拉格朗日点是三体意义下的一种平衡点,在拉格朗日点,第三体受到的另外两个物体的引力合力为零。如果稍微偏离平衡点,第三体就会受到一个大概指向拉格朗日点方向的合力,类似于绕天体中心的万有引力。从而可以得到环绕拉格朗日点的晕轨道。
十、拉格朗日点 三体
设给定二元函数z=ƒ(x,y)和附加条件φ(x,y)=0,为寻找z=ƒ(x,y)在附加条件下的极值点,先做拉格朗日函数,其中λ为参数。求L(x,y)对x和y的一阶偏导数,令它们等于零,并与附加条件联立,即
L'x(x,y)=ƒ'x(x,y)+λφ'x(x,y)=0,
L'y(x,y)=ƒ'y(x,y)+λφ'y(x,y)=0,
φ(x,y)=0
由上述方程组解出x,y及λ,如此求得的(x,y),就是函数z=ƒ(x,y)在附加条件φ(x,y)=0下的可能极值点。