主页 > 啤酒分类 > 拉格

拉格朗日插值分段插值(拉格朗日插值定义)

啤酒之家 2023-02-11 18:06 编辑:admin 293阅读

一、拉格朗日插值定义

在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。

许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。

二、拉格朗日插值适用范围

构造函数4a+b+m(a^2+b^2+c^2-3)

对函数求偏导并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同时a^2+b^2+c^2=3

所以

m=根号17/2根号3

a=-4根号3/根号17

b=-根号3/根号17

4a+b=-根号51

1、是求极值的,不是求最值的

2、如果要求最值,要把极值点的函数值和不可导点的函数值还有端点函数值进行比较

3、书上说是可能的极值点,这个没错,比如f(x)=x^3,在x=0点导数确实为0,但是不是极值点,所以是可能的极值点,到底是不是要带入原函数再看

三、拉格朗日插值实际应用

拉格朗日插值公式

约瑟夫·拉格朗日发现的公式

拉格朗日插值公式线性插值也叫两点插值,已知函数y = f (x)在给定互异点x0, x1上的值为y0= f (x0),y1=f (x1)线性插值就是构造一个一次多项式P1(x) = ax + b使它满足条件P1 (x0) = y0 P1 (x1) = y1其几何解释就是一条直线,通过已知点A (x0, y0),B(x1, y1)。

四、拉格朗日插值法定义

线性插值也叫两点插值,已知函数y = f (x)在给定互异点x0, x1上的值为y0= f (x0),y1=f (x1)线性插值就是构造一个一次多项式:P1(x) = ax + b,使它满足条件:P1 (x0) = y0, P1 (x1) = y1 其几何解释就是一条直线,通过已知点A (x0, y0),B(x1, y1)

五、拉格朗日插值的插值条件

一、拉格朗日插值法

是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法。许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式。

二、Lagrange基本公式:

拉格朗日插值公式,设,y=f(x),且xi< x < xi+1,i=0,1,…,n-1,有:

Lagrange插值公式计算时,其x取值可以不等间隔。由于y=f(x)所描述的曲线通过所有取值点,因此,对有噪声的数据,此方法不可取。

一般来说,对于次数较高的插值多项式,在插值区间的中间,插值多项式能较好地逼近函数y=f(x),但在远离中间部分时,插值多项式与y=f(x)的差异就比较大,越靠近端点,其逼近效果就越差。

三、C++实现

#include <iostream>

#include <conio.h>

#include <malloc.h>

double lagrange(double *x,double *y,double xx,int n)/*拉格朗日插值算法*/

{

int i,j;

double *a,yy=0.0;/*a作为临时变量,记录拉格朗日插值多项式*/

a=(double *)malloc(n*sizeof(double));

for(i=0;i<=n-1;i++)

{

a[i]=y[i];

for(j=0;j<=n-1;j++)

if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);

yy+=a[i];

}

free(a);

return yy;

}

/

int main()

{

int i;

int n;

double x[20],y[20],xx,yy;

printf("Input n:");

scanf("%d",&n);

if(n>=20)

{

printf("Error!The value of n must in (0,20).");

getch();

return 1;

}

if(n<=0)

{

printf("Error! The value of n must in (0,20).");

getch();

return 1;

}

for(i=0;i<=n-1;i++)

{

printf("x[%d]:",i);

scanf("%lf",&x[i]);

}

printf("\n");

for(i=0;i<=n-1;i++)

{

printf("y[%d]:",i);

scanf("%lf",&y[i]);

}

printf("\n");

printf("Input?xx:");

scanf("%lf",&xx);

yy=lagrange(x,y,xx,n);

printf("x=%.13f,y=%.13f\n",xx,yy);

getch();

}

六、拉格朗日插值定义式

不是,是一种分式函数,算初等函数。但是该内容出现在数学分析中。

七、什么是拉格朗日插值

拉格朗日插值法与牛顿插值法都是二种常用的简便的插值法。但牛顿法插值法则更为简便,与拉格朗日插值多项式相比较,它不仅克服了“增加一个节点时整个计算工作必须重新开始”的缺点,而且可以节省乘、除法运算次数。

同时,在牛顿插值多项式中用到的差分与差商等概念,又与数值计算的其他方面有着密切的关系。所以!!

从运算的角度来说牛顿插值法精确度高从数学理论上来说的话,我倾向于拉格朗日大神!!

话说拉格朗日当初不搞天文,不搞物理,专弄数学,估计是数学历史上最伟大的数学家了,没有之一。

下一篇:格莫拉第一季演员(格莫拉第一季分集剧情简介)
上一篇:四子王旗格根塔拉(四子王旗格根塔拉草原地图)