一、拉格朗日乘数法求最值?
构造函数4a+b+m(a^2+b^2+c^2-3)
对函数求偏导并令其等于0
4+2ma=0
1+2mb=0
2mc=0
同时a^2+b^2+c^2=3
所以
m=根号17/2根号3
a=-4根号3/根号17
b=-根号3/根号17
4a+b=-根号51
1、是求极值的,不是求最值的
2、如果要求最值,要把极值点的函数值和不可导点的函数值还有端点函数值进行比较
3、书上说是可能的极值点,这个没错,比如f(x)=x^3,在x=0点导数确实为0,但是不是极值点,所以是可能的极值点,到底是不是要带入原函数再看
二、什么是拉格朗日插值法?
在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。
许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。
三、拉格朗日求导法?
罗尔中值定理能推出拉格朗日中值定理和柯西中值定理,反过来拉格朗日中值定理和柯西中值定理也可以推出罗尔中值定理。
泰勒中值定理是由柯西中值定理推出来的。泰勒中值定理在一阶导数情形就是拉格朗日中值定理。
罗比达法则是柯西中值定理在求极限时应用。
四、拉格朗日插值法公式怎么记?
线性插值也叫两点插值,已知函数y = f (x)在给定互异点x0, x1上的值为y0= f (x0),y1=f (x1)线性插值就是构造一个一次多项式:P1(x) = ax + b,使它满足条件:P1 (x0) = y0, P1 (x1) = y1 其几何解释就是一条直线,通过已知点A (x0, y0),B(x1, y1)
五、拉格朗日乘数法原理?
拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的 多元函数的 极值的方法。
这种方法将一个有n 个变量与k 个 约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。
这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。
此方法的证明牵涉到偏微分, 全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。
六、拉格朗日乘数法公式?
拉格朗日乘数原理(即拉格朗日乘数法)由用来解决有约束极值的一种方法。
有约束极值:举例说明,函数 z=x^2+y^2 的极小值在x=y=0处取得,且其值为零。如果加上约束条件 x+y-1=0,那么在要求z的极小值的问题就叫做有约束极值问题。
上述问题可以通过消元来解决,例如消去x,则变成
z=(y-1)^2+y^2
则容易求解。
但如果约束条件是(x+1)^2+(y-1)^2-5=0,此时消元将会很繁,则须用拉格朗日乘数法,过程如下:
令
f=x^2+y^2+k*((y-1)^2+y^2)
令
f对x的偏导=0
f对y的偏导=0
f对k的偏导=0
解上述三个方程,即可得到可让z取到极小值的x,y值。
拉格朗日乘数原理在工程中有广泛的应用,以上只简单地举一例,更复杂的情况(多元函数,多限制条件)可参阅高等数学教材。
七、简述拉格朗日插值法代码实现的步骤?
一、拉格朗日插值法
是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法。许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式。
二、Lagrange基本公式:
拉格朗日插值公式,设,y=f(x),且xi< x < xi+1,i=0,1,…,n-1,有:
Lagrange插值公式计算时,其x取值可以不等间隔。由于y=f(x)所描述的曲线通过所有取值点,因此,对有噪声的数据,此方法不可取。
一般来说,对于次数较高的插值多项式,在插值区间的中间,插值多项式能较好地逼近函数y=f(x),但在远离中间部分时,插值多项式与y=f(x)的差异就比较大,越靠近端点,其逼近效果就越差。
三、C++实现
#include <iostream>
#include <conio.h>
#include <malloc.h>
double lagrange(double *x,double *y,double xx,int n)/*拉格朗日插值算法*/
{
int i,j;
double *a,yy=0.0;/*a作为临时变量,记录拉格朗日插值多项式*/
a=(double *)malloc(n*sizeof(double));
for(i=0;i<=n-1;i++)
{
a[i]=y[i];
for(j=0;j<=n-1;j++)
if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);
yy+=a[i];
}
free(a);
return yy;
}
/
int main()
{
int i;
int n;
double x[20],y[20],xx,yy;
printf("Input n:");
scanf("%d",&n);
if(n>=20)
{
printf("Error!The value of n must in (0,20).");
getch();
return 1;
}
if(n<=0)
{
printf("Error! The value of n must in (0,20).");
getch();
return 1;
}
for(i=0;i<=n-1;i++)
{
printf("x[%d]:",i);
scanf("%lf",&x[i]);
}
printf("\n");
for(i=0;i<=n-1;i++)
{
printf("y[%d]:",i);
scanf("%lf",&y[i]);
}
printf("\n");
printf("Input?xx:");
scanf("%lf",&xx);
yy=lagrange(x,y,xx,n);
printf("x=%.13f,y=%.13f\n",xx,yy);
getch();
}
八、拉格朗日法和欧拉法的区别?
其实他们的区别仅仅是颜色版本上的不同而已,
前者采用的是白色的面板,后者采用的是黑色的面板,他们的内置配置都是一模样的,他们都承认是高通骁龙870处理器,都支持5G双模全网通功能。都累死了,4500毫安电池,支持65w的快速充电,都支持立体声双扬声器。
九、利用拉格朗日乘数法求解条件极值和条件最值问题?
1、多元函数的条件极值与条件最值问题概述。
2、求条件极值的基础题目。
3、例1的解答(求出全部可能的条件极值点)。
4、例1中极值点的判断及评注(本题的“不等式”意义)。
5、考研试题中的条件最值问题。
6、例2的解答与评注。
十、什么是拉格朗日乘数法?
拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的 多元函数的 极值的方法。
这种方法将一个有n 个变量与k 个 约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。此方法的证明牵涉到偏微分, 全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值