主页 > 拉格

什么时候用拉格朗日型余项?

啤酒之家 2023-04-08 07:22 编辑:admin 84阅读

函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项.(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘.)证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:

下一篇:格瓦拉图片及价格(格瓦拉图片及价格大全)
上一篇:卡尔拉格斐俄罗斯(卡尔拉格斐俄罗斯男人)